> \^[_ bjbj .4bbXX,$&sX,,,,,,,$/1>,,,.,,*+4+,,0&++1(1(++Z1M,D,,&1X x: Mathematics IV Calculus
Third Quarter
Activity 1
Name: _________________________________ Date:_________ Score:______
MAXIMUM/MINIMUM PROBLEMS
The following problems are maximum/minimum optimization problems. They illustrate one of the most important applications of the first derivative. Many students find these problems intimidating because they are "word" problems, and because there does not appear to be a pattern to these problems. However, if you are patient you can minimize your anxiety and maximize your success with these problems by following these guidelines :
GUIDELINES FOR SOLVING MAX./MIN. PROBLEMS
1. Read each problem slowly and carefully. Read the problem at least three times before trying to solve it. Sometimes words can be ambiguous. It is imperative to know exactly what the problem is asking. If you misread the problem or hurry through it, you have NO chance of solving it correctly.
2. If appropriate, draw a sketch or diagram of the problem to be solved. Pictures are a great help in organizing and sorting out your thoughts.
3. Define variables to be used and carefully label your picture or diagram with these variables. This step is very important because it leads directly or indirectly to the creation of mathematical equations.
4. Write down all equations which are related to your problem or diagram. Clearly denote that equation which you are asked to maximize or minimize. Experience will show you that MOST optimization problems will begin with two equations. One equation is a "constraint" equation and the other is the "optimization" equation. The "constraint" equation is used to solve for one of the variables. This is then substituted into the "optimization" equation before differentiation occurs. Some problems may have NO constraint equation. Some problems may have two or more constraint equations.
5. Before differentiating, make sure that the optimization equation is a function of only one variable. Then differentiate using the wellknown rules of differentiation.
6. Verify that your result is a maximum or minimum value using the first or second derivative test for extrema.
The following problems range in difficulty from average to challenging.
PROBLEM 1:Find two nonnegative numbers whose sum is 9 and so that the product of one number and the square of the other number is a maximum.
PROBLEM 2:Build a rectangular pen with three parallel partitions using 500 feet of fencing. What dimensions will maximize the total area of the pen ?
PROBLEM 3:An open rectangular box with square base is to be made from 48 ft.2of material. What dimensions will result in a box with the largest possible volume ?
PROBLEM 4:A container in the shape of a right circular cylinder with no top has surface area 3ft.2What height h and base radius r will maximize the volume of the cylinder ?
PROBLEM 5:A sheet of cardboard 3 ft. by 4 ft. will be made into a box by cutting equalsized squares from each corner and folding up the four edges. What will be the dimensions of the box with largest volume ?
PROBLEM 6:Consider all triangles formed by lines passing through the point (8/9, 3) and both the x and yaxes. Find the dimensions of the triangle with the shortest hypotenuse.
PROBLEM 7:Find the point (x, y) on the graph ofnearest the point (4, 0).
PROBLEM 8:A cylindrical can is to hold 20m.3The material for the top and bottom costs $10/m.2and material for the side costs $8/m.2Find the radius r and height h of the most economical can.
PROBLEM 9:You are standing at the edge of a slowmoving river which is one mile wide and wish to return to your campground on the opposite side of the river. You can swim at 2 mph and walk at 3 mph. You must first swim across the river to any point on the opposite bank. From there walk to the campground, which is one mile from the point directly across the river from where you start your swim. What route will take the least amount of time ?
PROBLEM 10:Construct a window in the shape of a semicircle over a rectangle. If the distance around the outside of the window is 12 feet, what dimensions will result in the rectangle having largest possible area ?
PROBLEM 11:There are 50 apple trees in an orchard. Each tree produces 800 apples. For each additional tree planted in the orchard, the output per tree drops by 10 apples. How many trees should be added to the existing orchard in order to maximize the total output of trees ?
PROBLEM 12:Find the dimensions of the rectangle of largest area which can be inscribed in the closed region bounded by the xaxis, yaxis, and graph ofy=8x3. (See diagram.)
PROBLEM 13:Consider a rectangle of perimeter 12 inches. Form a cylinder by revolving this rectangle about one of its edges. What dimensions of the rectangle will result in a cylinder of maximum volume ?
PROBLEM 14:A movie screen on a wall is 20 feet high and 10 feet above the floor. At what distance x from the front of the room should you position yourself so that the viewing angleof the movie screen is as large as possible ? (See diagram.)
PROBLEM 15:Find the dimensions (radius r and height h) of the cone of maximum volume which can be inscribed in a sphere of radius 2.
PROBLEM 16:What anglebetween two edges of length 3 will result in an isosceles triangle with the largest area ? (See diagram.)
PROBLEM 17:Of all lines tangent to the graph of, find the tangent lines of mimimum slope and maximum slope.
PROBLEM 18:Find the length of the shortest ladder that will reach over an 8ft. high fence to a large wall which is 3 ft. behind the fence. (See diagram.)
PROBLEM 19:Find the point P = (x, 0) on the xaxis which minimizes the sum of the squares of the distances from P to (0, 0) and from P to (3, 2).
PROBLEM 20:Car B is 30 miles directly east of Car A and begins moving west at 90 mph. At the same moment car A begins moving north at 60 mph. What will be the minimum distance between the cars and at what time t does the minimum distance occur ?
PROBLEM 21:A rectangular piece of paper is 12 inches high and six inches wide. The lower righthand corner is folded over so as to reach the leftmost edge of the paper (See diagram.).
Find the minimum length of the resulting crease.
wTU./:Ѽ}eM8M8)h<0h<0B*CJOJPJQJaJph/h<0h<06B*CJOJPJQJ]aJph/h0dh<06B*CJOJPJQJ]aJph/h?h0d6B*CJOJPJQJ]aJph)h?h0dB*CJOJPJQJaJph#h?B*CJOJPJQJaJph)h0dh0dB*CJOJPJQJaJph/h0dh0d5B*CJOJPJQJ\aJph,h0d0JB*CJaJfHphq
'23wA
k
":T$ddd[$\$^a$gd0d$d^a$gd0dddd[$\$gd0d$da$gd0d$ddd@&[$\$a$gdSoYgd0d dgd0d$da$gd0dTU./mo!#$dd[$^a$gd<0
&Fddd[$\$gd<0ddd[$\$^gd?
&Fddd[$\$gd?ddd[$\$gd?
hd^hgd?oz#.
*+./`a_kvԼԝԼԼԼ~Լ_ԼԼԼԼԼԼ=jh4(Q{[4ʰA@Mfj$Wajd V@nnVܽeniH%z&7N$2![v}ЮiS}n,DRlXO
?4+:_CKbOJk'"H;҆,D'#iC"mBtB:"H;҆,D'#iC"mBtB:"H;7Dk:!H{iC逴G!m6Dk:!H{iCt%wE'#iC"muB:"H;҆jnU'#iC"mtB:"UU^Ѷ65T~TϽSfY=(5+8o4*z/TkZQՕyJpk=ڪz'6t>cE/KE{Mok)hj*z'5m=Դ 5}}(fO{jZ?Ե{y<>VJWzlhSK}ν9[kб{^PIC?
ZzZ)\MmqױK^Z:{/_Է6KeumV ^ٳWU8MT}{iT=ߗ}kzBks\k7x}kmz{WY^PsFeA:vg/ 5=0cj
I復;{v۪17]TiC7}nzїW]^zuУo5G߾ڍ]v~ۥK_nK_Ƭ/ݝˠC>H;9wkA9^:?l{}zz)س>{ֱ#CGY{]'m{8i3Ǜ]stAt:_PW=ҽEw}~Go
?" #ҿ"땡My~IۦŊ8U+W,hv8uڥ?9s9s*:jtLS:p8ۑZތtw#M3#UU#}ηޗ㚕o&[M4+7!5n7i4X?v>v%&}ZcL MJ_@ATn_}X~ ZUu?A/͎KRTTQTTPTRTt,uj'TLP=RԌTNP7IX%PũRS=jJ
NmO唺)5yǁZjTT/iZ*7tֱϙ%8U585KkTũ\R_SLa51TTj55jB+T2*@\XDr3 ʅUQ.,,Xp/T4f̔LRa"uRS2R$XN`j"E:S$N5D]
ATbTT`T6,DpjN֞i38my(/2PTjȞIENDB`Dd
A?fover x^2+3 } $Picture 10Description: $ y= \displaystyle{ 6 \over x^2+3 } $"b^R[ƙcC:gn2R[ƙcCPNG
IHDRQ1PUX_0PLTEwwwUUU333fffDDD"""ttRNSbKGDHcmPPJCmp0712OmoIDATHcM$@g;Sĩd{5q*V%61DTxϚH7A{?q*/rV"Ci[lTvH(V*ީMʍ[Orܔza6V@nR [a7QVC,6MЅVgcQ9/MW#q]A6e;a6HGޘX
VzC5,a6rhl&*'mݻƦrkvGH*K[8 ,?b}X5m]'%CJ >6l*=7cStJ
%T6.~rO~ߖ}7IіpQTT xiPIENDB`DdA:
A?èMaxMin18APicture 11Description: http://www.math.ucdavis.edu/~kouba/MAXMINCHARTSdirectory/MaxMin18A.gif"bxع2lK:"T]gnLع2lK:"PNG
IHDR_т~bKGD݊cmPPJCmp0712OmIDATxۿVT"D۴1]1̖~`bM$&2*2Cx\{@@<߳wt𫿘f6lf![s5I؟b{qXűfI1k(2cx:#.)19bÂcp:c3fp:c3fPNAqMc<c<ch:C`:>[qy>w3k(2aK'`X: N6dq\ȠtB2(AǅA;/dQ!;O`H:Ctf
Őtǀt$Nb$Nb$#1 x:"Dy"8b(~YRWCW9~(c1k(IGctTVpXñcӃSqAeMtXɱcYS7~c:7M;ltYűC:]?xmftn^u/7߬sYg哵ap{apݳ
8TOIe={tϮo].t_~5\~lbM7*5k9ԙdPL?.L20
Uk8rL4SLMgD؊c%jiǅbZ:'̴t~bVqXꇏs)5fӘ2*Swd
=_TV"k}LNgϾ`?F}ܩsSvށwގlT"uJ:qp嘘NYC118Xc
ZI𡎔W`űcus^[>k`~ff9*mΣcOg6w`
')GxVFWc5ǂt00<;cYűct@f
t@槃c2/yKf+96y0bt`6Ng*5k96JgPl48
9榓Bsw^sw^sw^
8p嘓N
bN:)}
Uk8r<$vN'Ibt؊c%j4f
Ic$c;Ȭip4TVpXͱ6`E5$]gKf63XwjISfX/{m`SD,d\LjyaWIENDB`Dd:
A?èMaxMin21APicture 12Description: http://www.math.ucdavis.edu/~kouba/MAXMINCHARTSdirectory/MaxMin21A.gif" bxzdx
j$FKTc#gnLzdx
j$FKPNG
IHDRx"tbKGD݊cmPPJCmp0712OmIDATxۿDEtMđ.Ho[DQ]^qSRPP$A ]H&¥/r]yo!8i$ww=vaLo6/x.`S ǿko=Opk5ۏe>>>><_G<_0x#/哊(YY r@O:Y_@7_@]>?6q[qns}2>Wg?7C2>K^ς/F?u_!_./x~GB1_=jg~]z'_\?>8n\sxBվ>&@^
(HWJ~+JG0nͥq}Aj{6_^}D5uO#]SӫHwzSVza~}qmdz5tݼ5GV[ݟwz>jzzrz~8}ByZhEx=x!Az{?9R^FLo)ZOho]7f~Gcx3ɣht4_X=ݏqyb}"qzxܯ+2τ
Jܱ>?!ϜFj>)ybǚ+'[T=˝_Rg?OFCCwW?GLu_:N0W7787wZ8>}ozdwγra~珟ؗ E}'a^ֻW#·Q>y}n{&?zog6lzQ_ mxo?>pBxmèG7kq1
<~چ^5^6\Ǘ6oW6zrDazN>^,ʆ}g{mU<_1aq3Ĩ^?eW~ӧO}~\7kXg
<>&_^`kiٗqW(ǷU
3?N7qsO0!KyGmc9LsPd1>ooC!bz"\Ǉ9ӗ9W;~y~#GG26666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JNormaldCJ_HaJmH sH tH DA`D
Default Paragraph FontRiR
0Table Normal4
l4a(k (
0No List8O80dapplestylespanBB0dappleconvertedspaceR@R 0d0Balloon TextdCJOJQJ^JaJNo!N0d0Balloon Text CharCJOJQJ^JaJ@@2@0d List Paragraph ^m$`^@B`0d0Normal (Web)ddd[$\$CJOJPJQJ^JaJPK![Content_Types].xmlN0EHJ@%ǎǢș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\ʜ̭NleXdsjcs7f
W+Ն7`gȘJjh(KD
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRcXŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?mٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ45xd8?ǘd/Yt&LILJ`& Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}$b{P8g/]QAsم(#L[PK![Content_Types].xmlPK!֧60_rels/.relsPK!kytheme/theme/themeManager.xmlPK!0C)theme/theme/theme1.xmlPK!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
4: T L#@0(
B
S ? PROBLEM_1 PROBLEM_2 PROBLEM_3 PROBLEM_4 PROBLEM_5 PROBLEM_6 PROBLEM_7 PROBLEM_8 PROBLEM_9
PROBLEM_10
PROBLEM_11
PROBLEM_12
PROBLEM_13
PROBLEM_14
PROBLEM_15
PROBLEM_16
PROBLEM_17
PROBLEM_18
PROBLEM_19
PROBLEM_20
PROBLEM_21/ o
#
_v+"
9 y

j6KRX__a4@[]7 : d
l
w
z
+.
~X^gkls~37*.3333333333333333333333333333333333z s9
n:D#Y @25
3q<7L*{}q2h^h`OJQJ^Jo(o8^8`OJQJ^Jo(o^`OJQJo( ^ `OJQJo(^`OJQJ^Jo(ox^x`OJQJo(H^H`OJQJo(^`OJQJ^Jo(o^`OJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(8^8`OJQJ^Jo(o^`OJQJ^Jo(o ^ `OJQJo(^`OJQJo(x^x`OJQJ^Jo(oH^H`OJQJo(^`OJQJo(^`OJQJ^Jo(o^`OJQJo(^`CJOJQJo(^`CJOJQJo(opp^p`CJOJQJo(@@^@`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(^`CJOJQJo(PP^P`CJOJQJo(^`OJQJ^Jo(op^p`OJQJ^Jo(o@^@`OJQJo(^`OJQJo(^`OJQJ^Jo(o^`OJQJo(^`OJQJo(P^P`OJQJ^Jo(o ^ `OJQJo(^`B*CJo(ph.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.^`o(.^`.pL^p`L.@^@`.^`.L^`L.^`.^`.PL^P`L.<7n{}q@2 s9
Y5
3 ": 9 "N@JdiddJdiR}?+<032<C=?@ABCDEFGHIJLMNOPQRTUVWXYZ]Root Entry F>4_Data
%+1Table1 2WordDocument.4SummaryInformation(KDocumentSummaryInformation8SCompObjr
F Microsoft Word 972003 Document
MSWordDocWord.Document.89q